RESEARCH MEETS PRACTICE: IDENTIFYING AND APPLYING CMFs

Ashley Reinkemeyer, P.E. Missouri DOT December 16, 2013

2-lane, Rural Road Example

Paving a 2-foot shoulder and adding centerline and edgeline rumble stripes on a 2-lane minor rural road.

What happens to safety when you:

- Pave the shoulder
- Add CL and EL rumble stripes AND...
- Steepen the sideslope????

What's Different?

• Made assumptions (volume, lane width, grade, driveway density, etc.), but they are relative.

- Therefore the only the difference between the existing condition and the proposed condition are:
 - Shoulder Type
 - Centerline Rumble Stripes
 - Edgeline Rumble Stripes
 - Sideslope

Edgeline Rumble CMF

Source = FHWA Training "HSM
 Practitioner's Guide for Two-Lane Rural
 Highways Workshop"

- CMF = 0.870

Applying CMFs to the SPF Base Prediction Model: Example

From Example Calculations: Rural Two-Lane Road:

AADT = 3,500 vpd, Length = 5.02 mi, 31 Driveways, RHR = 5,

 $N_{spf-rs} = 4.69$

Lane Width = 10 ft	CMF _{1r} = (1.172)
Shoulder Width = 2 ft gravel	$CMF_{2r} = 1.180$
Segments on Grade (none)	$CMF_{5r} = 1.000$
Driveway Density (6.17/mi)	CMF _{6r} = 1.029
Centerline Rumble, None	$CMF_{7r} = 1.000$
Edgeline Rumble	CMF _{7re} = 0.870
Passing/Climbing Lanes, None	$CMF_{8r} = 1.000$
TWLTLs, None	$CMF_{9r} = 1.000$
Roadside Design, RHR = 5	CMF _{10r} = 1.143
Lighting, None	$CMF_{11r} = 1.000$
Automated Enforcement, None	$CMF_{12r} = 1.000$

2-77

Source: FHWA

Steepening Sideslope CMF

- Source = HSM, Volume 3, Table 13-18
 'Potential Crash Effects on Total Crashes of Flattening Sideslopes', page 13-20
- From table, assume 1V:2H to 1V:3H.

Treatment	Setting (Road Type)	Traffic Volume	Crash Type (Severity)			CMF		
				Sideslope	Sideslope in After Condition			tion
Flatten				in Before Condition	1V:4H	1V:5H	1V:6H	1V:7H
	Rural	Unspecified	All types (Unspecified)	1V:2H	0.94	0.91	0.88	0.85
Flatten Sideslopes	(Two-lane road)			1V:3H	0.95	0.92	0.89	0.85
				1V:4H		0.97	0.93	0.89
				1V:5H			0.97	0.92
				1V:6H				0.95

Steepening Sideslope CMF

Table 13-18. Potential Crash Effects on Total Crashes of Flattening Sideslopes (15)

Treatment	Setting (Road Type)	Traffic Volume	Crash Type (Severity)	CMF						
				Sideslope	Sideslope in After Condition					
	Rural (Two-lane road)			in Before Condition	1V:4H	1V:5H	1V:6H	1V:7H		
		Unspecified	All types (Unspecified)	1V:2H	0.94	0.91	0.88	0.85		
latten ideslopes				1V:3H	0.95	0.92	0.89	0.85		
Sidestopes				1V:4H		0.97	0.93	0.89		
				1V:5H			0.97	0.92		
				1V:6H				0.95		

Base Condition: Existing sideslope in before condition.

NOTE: Standard error of the CMF is unknown.

- Take inverse of because we are steepening.
- CMF = 1 / 0.97 = 1.03

Existing Conditions

Only (PDO)

		V	Vorksheet 1B	Crash Mc	dification	Factors fo	or Rural Tv	vo-Lane Tw	o-Way Roadv	vay Segments	i	
(1) (2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
CMF for	CMF for	CMF for	CMF for Super-	CMF for	CMF for	CMF for	CMF for	CMF for	CMF for	CMF for	CMF for	Combined CMF
Lane Should		Horizontal	elevation	Grades	Driveway	Centerline	Passing	Two-Way	Roadside	Lighting	Automated	·
Width	Width	Curves	1	1	Density	Rumble	Lanes	Left-Turn	Design	'	Speed	ı
and Type		'	1	1	1	Strips	1	Lane		!	Enforcement	
CMF 1r	CMF 2r	CMF 3r	CMF 4r	CMR 5r	CMF 6r	CMF 7r	CMF 8r	CMF 9r	CNF 10r	CMF 11r	CMF 12r	MF comb
from	from	from	from Equations	from	from	from	from	from	from Equation	from Equation	from Section	(\)x(2\)
Equation	Equation	Equation	10-14, 10-15,	Table 10-	Equation	Section	Section	Equation	10-20	10-21	10.7.1	x(11)x(12)
10-11	10-12	10-13	or 10-16	11	10-17	10.7.1	10.7.1	10-18 & 10-	{	'	'	
			<u> </u>	<u> </u>	<u> </u>		<u> </u>	19	<u> </u>	<u> </u>	<u> </u>	
1.03	1.19	1.00	1.00	1.00	1.03	1.00	1.00	1.00	1.14	1.00	1.00	1.448
		W	orksheet 1C F	Roadway	Segment	Crashes for	or Rural T	wo-Lane Tv	vo-Way Roady	way Segments	à	
(1	-/	(2)	(3)		(4)		(5)		(6)	(7)		(8)
Crash S	everity	N spf rs	Overdispersion		Crash Severity		N spf rs by Severity		Combined	Calibration	1	average crash
Le	vel	'	Paramete	er, k	Distri	bution	Distri	ibution	CMFs	Factor, Cr	frequency,	N predicted
									 '	rs (cra		shes/year)
		from	1	!	from Ta	able 10-3			(13) from	'	1	
A	ļ	Equation	from Equation	on 10-7		ortion)	(2)TOT	TAL x (4)	Worksheet	'	(5)x	(6)x(7)
		10-6		!					1B	<u> </u>		
Total		5.343	0.02			000		.343	1.45	1.00		7.736
Fatal and Injury (FI)					0.3	321 1.1		.715	1.45	1.00	*	483

3.628

1.45

1.00

5.253

0.679

Proposed Conditions

10-6

5.343

0.02

Total

Only (PDO)

Fatal and Injury (FI)

Worksheet 1B Crash Modification Factors for Rural Two-Lane Two-Way Roadway Segments														
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)		
CMF for	CMF for	CMF for	CMF for Super-	CMF for	CMF for	CMF for	CMF for	CMF for	CMF for	CMF for	CMF for	Combined	Steepen	Edgeline
Lane	Shoulder	Horizontal	elevation	Grades	Driveway	Centerline	Passing	Two-Way	Roadside	Lighting	Automated	CMF	Sideslope	Rumbles
Width	Width	Curves			Density	Rumble	Lanes	Left-Turn	Design		Speed			
	and Type					Strips		Lane			Enforcement			
CMF 1r	CMF 2r	CMF 3r	CMF 4r	CMR 5r	CMF 6r	CMF 7r	CMF 8r	CMF 9r	CMF 10r	CMF 11r	CMF 12r	CMF comb		
from	from	from	from Equations	from Table	from Equation	from	from	from	from Equation	from Equation	from Section	(1)x(2)x		
Equation	Equation	Equation	10-14, 10-15,	10-11	10-17	Section	Section	Equation	10-20	10-21	10.7.1			
10-11	10-12	10-13	or 10-16			10.7.1	10.7.1	10-18 & 10-	-			x(11)x(12)		
								19						
1.03	1.17 1.00 1.00 1.00 1.03		0.94	1.00	1.00	1.14	1.00	1.00	1.197	1.030	0.870			
		V	Vorksheet 1C	Roadway S	egment Crash	es for Rura	al Two-Lar	ne Two-Way	y Roadway Se	egments				
(1)	(2)	(3)	<u> </u>	(4)	(4)		(5)	(6)	(7)	(8)			
Crash S	Severity	N spf rs	Overdisp	ersion	Crash Se	verity		y Severity	Combined	Calibration	Predicted	average		
Le	vel		Parame	ter, k	Distribu	ıtion	Distri	bution	CMFs	Factor, Cr	crash free	quency,		
		from Equation	from Equa	tion 10-7	from Table 10-3		(2)тот	AL x (4)	(13) from Worksheet		(5)×(6	×(7)		

5.343

1.715

3.628

(proportion)

1.000

0.321

0.679

1B

1.20

1.20

1.20

1.00

1.00

1.00

6.394

2.000

4.342

Conclusion...

- Existing Condition:
 - 7.736 crashes/year
- Proposed Condition:
 - 6.394 crashes/year

Predicted 17.3% reduction in total crashes by paving a 2-foot shoulder and adding CL and EL rumble stripes to a 10-mile segment of a rural, 2-lane road with 2000 veh/day.

Thank You.